skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shah, Priya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Adversarial images are a class of images that have been slightly altered by very specific noise to change the way a deep learning neural network classifies the image. In many cases, this particular noise is imperceptible to the human vision system and thus presents a vulnerability of significant concern to the machine learning and artificial intelligence community. Research towards mitigating this type of attack has taken many forms, one of which is to filter or post process the image before classifying the image with a deep neural network. Techniques such as smoothing, filtering, and compression have been used with varying levels of success. In our work, we explored the use of a neuromorphic software and hardware approach as a protection against adversarial image attack. The algorithm governing our neuromorphic approach is based upon sparse coding. Our sparse coding approach is solved using a dynamic system of equations that models biological low level vision. Our quantitative and qualitative results show that a sparse coding reconstruction is remarkably invariant to changes in sparsity and reconstruction error with respect to classification accuracy. Furthermore, our approach is able to maintain low reconstruction errors without sacrificing classification performance. 
    more » « less